Sub-Kelvin Detectors

- Use ~meV quanta to obtain better energy resolution than conventional technologies
 - phonons, superconducting quasiparticles
- Can combine with conventional technologies to enable nuclear-recoil discrimination
 - critical for coherent neutrino scattering, WIMP dark matter searches
- Typically not subject to quenching
 - (not mentioned; to be noted in next revision)
 - Same energy scale for EM interactions, alphas, neutrons
- · Discussion of general principles and specific implementations for
 - thermal phonon detection
 - athermal phonon detection
 - superconducting quasiparticle detection
 - ionization collection at low temperatures in semiconductors
 - very different from 77K and 300K!
 - scintillation collection at low temperatures

- Large chart with current performances
 - unlike conventional detectors, so many varieties of implementation that generic quantitative results are hard to find
- Will attempt to keep up to date (with much help from individual groups)

Experiment	technique	substrate + mass	sensor	ΔE_{FWHM} at $E = 0$	$ [keV] $ at E_0	E_0 [keV]	comments
WIMP dark matter							
CDMS I	thermal	Ge	NTD Ge	0.3	0.7	12	nuclear recoil
(1996-2000)	phonon,	$0.16~\mathrm{kg}$	thermistor,				discrimination
	ionization		H-a-Si/Al	0.9	1.1	10.4	w/ ionization
			electrode				yield
CDMS II	athermal	Ge	tungsten	0.4	2.4	20.7	CDMS I+
(2001-2008)	phonon,	$0.25~\mathrm{kg}$	TES,				surface-event
	ionization		a-Si/Al	0.7	0.8	10.4	discrimination
			electrode				w/phonons
SuperCDMS-	athermal	Ge	tungsten	0.4	N/A	N/A	CDMS II+
SNOLAB,	phonon,	$0.64~\mathrm{kg}$	TES,				surface-event
in develop-	ionization		a-Si/Al	0.7	N/A	N/A	discr. $w/ioniz.+$
ment			interdig.				phonon z asym.
EDELWEISS I	thermal	Ge	NTD Ge	2.3	2.3	24.2	nuclear recoil
(1996-2005)	phonon,	$0.32~\mathrm{kg}$	thermistor,				discrimination
	ionization		a-Si/Al	1.1	1.1	10.4	w/ionization
			a-Ge/Al				yield
EDELWEISS II	[thermal	Ge	NTD Ge	3.6	3.6	38.0	EDELWEISS I
(2006-)	phonon,	$0.4~\mathrm{kg}$	thermistor,				+surface-event
	ionization		a-Si/Al	1.0	1.0	10.4	discrimination
			interdig.				w/ioniz. asym.
CRESST I	athermal	Al_2O_3	tungsten	0.20	0.24	1.5	no NR discr.
(1996-2002)	phonon	$0.26~\mathrm{kg}$	SPT				
CRESST II	athermal	$CaWO_4$	tungsten	0.3	0.3	8.1	NR discr.
(2003-)	phonon,	0.3 kg	SPT				w/scint.
	scint.	$(ZnWO_4)$	(target and	1.0	3.5	10	yield
			photon abs.)				
α decay							_
ROSEBUD	athermal	BGO	NTD Ge	6	5500	18	α discr.
(1996-)	phonon,	46 g	thermistor				w/scint.yield,
	scintillation		(target &	N/A	N/A	N/A	first detection of
			photon abs.)				209 Bi α decay
β decay							_
Oxford ⁶³ Ni	athermal	InSb	Al STJ	1.24	1.24	67	_
(1994-1995)	phonon	$3.3~\mathrm{g}$					
MARE	thermal	$AgReO_4$	P-implanted	N/A	0.033	2.6	
(2009-)	phonon	$0.5~\mathrm{mg}$	Si thermistor				
$0\nu\beta\beta$ decay							
CUORE	thermal	TeO_2^*	NTD Ge	N/A	7	2527	
(2003-)	phonon	$0.75~\mathrm{kg}$	thermistor				

^{*} The CUORE energy resolution is worse than can be obtained with Ge diode detectors.

PDG/Sub-Kelvin Detectors 2 Sunil Golwala